# **CORE MODULES:** HNC/HND Manufacturing Engineering (Polymers)

You must take units worth 120 credits at each level of the course. Each unit is worth a specified number of credits.

# Level 4 (HNC)

# Engineering Design (15 credits)

• The tremendous possibilities of the techniques and processes developed by engineers can only be realised by great design. Design turns an idea into a useful artefact, the problem into a solution, or something ugly and inefficient into an elegant, desirable and cost effective everyday object. Without a sound understanding of the design process the engineer works in isolation without the links between theory and the needs of the end user. The aim of this unit is to introduce students to the methodical steps that engineers use in creating functional products and processes; from a design brief to the work, and the stages involved in identifying and justifying a solution to a given engineering need. Among the topics included in this unit are: Gantt charts and critical path analysis, stakeholder requirements, market analysis, design process management, modelling and prototyping, manufacturability, reliability life cycle, safety and risk, management, calculations, drawings and concepts and ergonomics. On successful completion of this unit students will be able to prepare an engineering design specification that satisfies stakeholders' requirements, implement best practice when analysing and evaluating possible design solutions, prepare a written technical design report, and present their finalised design to a customer or audience.

# Engineering Maths (15 credits)

• The mathematics that is delivered in this unit is that which is directly applicable to the engineering industry, and it will help to increase students' knowledge of the broad underlying principles within this discipline. The aim of this unit is to develop students' skills in the mathematical principles and theories that underpin the engineering curriculum. Students will be introduced to mathematical methods and statistical techniques in order to analyse and solve problems within an engineering context. On successful completion of this unit students will be able to employ mathematical methods within a variety of contextualised examples, interpret data using statistical techniques, and use analytical and computational methods to evaluate and solve engineering problems.

## Engineering Science (15 credits)

• Engineering is a discipline that uses scientific theory to design, develop or maintain structures, machines, systems, and processes. Engineers are therefore required to have a broad knowledge of the science that is applicable to the industry around them. This unit introduces students to the fundamental laws and applications of the physical sciences within engineering and how to apply this knowledge to find solutions to a variety of engineering problems. Among the topics included in this unit are: international system of units, interpreting data, static and dynamic forces, fluid mechanics and thermodynamics, material properties and failure, and A.C./D.C. circuit theories. On successful completion of this unit students will be able to interpret and present qualitative and quantitative data using computer software, calculate unknown parameters within mechanical systems, explain a variety of material properties and use electromagnetic theory in an applied context.

## Managing a Professional Engineering Project (15 credits)

The responsibilities of the engineer go far beyond completing the task in hand. Reflecting on their role in a wider ethical, environmental and sustainability context starts the process of becoming a professional engineer – a vial requirement for career progression. Engineers seldom work in isolation and most tasks they undertake require a range of expertise, designing, developing, manufacturing, constructing, operating and maintaining the physical infrastructure and content of our world. The bringing together of these skills, expertise and experience is often managed through the creation of a project. This unit introduces students to the techniques and best practices required to successfully create and manage an engineering project designed to identify a solution to an engineering need. While carrying out this project students will consider the role and function of engineering in our society, the professional duties and responsibilities expected of engineers together with the behaviours that accompany their actions. Among the topics covered in this unit are: roles, responsibilities and behaviours of a professional engineer, planning a project, project management stages, devising solutions, theories and calculations, management using a Gantt chart, evaluation techniques, communication skills, and the creation and presentation of a project report. On successful completion of this unit students will be able to conceive, plan, develop and execute a successful engineering project, and produce and present a project report outlining and reflecting on the outcomes of each of the project processes and stages. As a result, they will develop skills such as critical thinking, analysis, reasoning, interpretation, decisionmaking, information literacy, and information and communication technology, and skills in professional and confident selfpresentation. This unit is assessed by a Pearson-set assignment. The project brief will be set by the centre, based on a theme provided by Pearson (this will change annually). The theme and chosen project within the theme will enable students to explore and examine a relevant and current topical aspect of professional engineering.

#### Production Engineering for Manufacture (15 credits)

• All of the manufactured products we use in our daily lives, from processed food to clothing and cars, are the result of production engineering. Production engineers need to have a comprehensive knowledge and understanding of all the possible production technologies available, their advantages and disadvantages, the requirements of the production system operation and the interaction between the various components of the production system. This unit introduces students to the production process for key material types; the various types of machinery used to manufacture products and the different ways of organising production systems to optimise the production process; consideration of how to measure the effectiveness of a production system within the overall context of the manufacturing system; and an examination of how production engineering contributes to ensuring safe and reliable operation of manufacturing. On successful completion of this unit students will be able to illustrate the role and purpose of production engineering and its relationship with the other elements of a manufacturing system. They will be able to select the most appropriate production processes and associated facility arrangements for manufacturing products of different material types and design a production system incorporating a number of different production processes.

#### Quality and Process Improvement (15 credits)

• Quality has always been the key to business success and survivability, but it requires organisations to allocate a lot of effort and resources to achieve it. The key to providing quality services and designing top quality products lies in the strength and effectiveness of the processes used in their development; processes which must be constantly reviewed to ensure they operate as efficiently, economically and as safely as possible. This unit introduces students to the importance of quality assurance processes in a manufacturing or service environment and the principles and theories that underpin them. Topics included in this unit are: tools and techniques used to support quality control, attributes and variables, testing processes, costing modules, the importance of qualifying the costs related to quality, international standards for management (ISO 9000, 14000, 18000), European Foundation for Quality Management (EFQM), principles, tools and techniques of Total Quality Management (TQM) and implementation of Six Sigma. On successful completion of this unit students will be able to illustrate the processes and applications of statistical process, explain the quality control tools used to apply costing techniques, identify the standards expected in the engineering environment to improve efficiency and examine how the concept of Total Quality Management and continuous improvement underpins modern manufacturing and service environments.

## Polymer Materials (15 credits)

• This unit will provide students with the necessary background knowledge and understanding of the structure and property relationship of polymer materials to guide their selection of material and manufacturing techniques to produce a sustainable, fit for purpose product. Polymer products are driving innovation and research around the world and are predicted to expand further to replace traditional engineering materials in a wide variety of applications. Students will be made aware of the wide range of polymer materials at their disposal and the opportunity for using the new grades that are being developed on a daily basis. This unit will provide students with an understanding of the relationship between a polymer's structure and properties and between processing technique and product performance. The ability to determine a polymer's properties is crucial and this unit will include a review and practical application of the main testing techniques. One of the most important skills for a manufacturing engineer is the ability to distinguish between different types of polymer materials. Inadequate consideration of a specific behavioural requirement can lead to product failure and reduced service life. This will be addressed by providing techniques for material modification and learning how to use data sources for material selection. In addition this unit will consider environmental concerns and offer solutions to reduce waste and improve sustainability.

## Polymer Processing (15 credits)

• This unit is designed to develop students' knowledge and understanding of the main manufacturing processes and techniques that can be applied to a wide range of polymer materials for a variety of manufacturing applications. It is essential for a manufacturing engineer who may lead the planning, operation and management of their company's manufacturing systems to have a broad underpinning knowledge of conventional polymer manufacturing processes. Polymer materials have the capacity and potential to be processed into a huge variety of shapes and forms for a wide range of applications. The first outcome of this unit provides background knowledge of the main principles of polymer flow and heat transfer relevant to processing. The second and third outcomes give a detailed overview of the conventional manufacturing techniques of polymers (extrusion, blow moulding, thermoforming and injection moulding) considering relevant equipment and processing steps. The final outcome provides the context to inform selection of the most suitable method of processing for a given application.

# Level 5 (HND)

#### Research Project (30 credits)

• Completing a piece of research is an opportunity for students to showcase their intellect and talents. It integrates knowledge with different skills and abilities that may not have been assessed previously, which may include seeking out and reviewing original research papers, designing their own experimental work, solving problems as they arise, managing time, finding new ways of analysing and presenting data, and writing an extensive report. Research can always be a challenge but one that can be immensely fulfilling, an experience that goes beyond a mark or a grade, but extends into long-lasting areas of personal and professional development. This unit introduces students to the skills necessary to deliver a complex, independently conducted research project that fits within an engineering context. On successful completion of this unit students will be able to deliver a complex and independent research project in line with the original objectives, explain the critical thinking skills associated with solving engineering problems, consider multiple perspectives in reaching a balanced and justifiable conclusion, and communicate effectively a research project's outcome. Therefore, students develop skills such as critical thinking, analysis, reasoning, interpretation, decision-making, information literacy, information and communication technology literacy, innovation, conflict resolution, creativity, collaboration, adaptability and written and oral communication.

## Professional Engineering Management (15 credits)

• Engineers are professionals who can design, develop, manufacture, construct, operate and maintain the physical infrastructure and content of the world we live in. They do this by using their academic knowledge and practical experience, in a safe, effective and sustainable manner, even when faced with a high degree of technical complexity. The aim of this unit is to continue building up on the knowledge gained in Unit 4: Managing a Professional Engineering Project, to provide students with the professional standards for engineers and to guide them on how to develop the range of employability skills needed by professional engineers. Among the topics included in this unit are: engineering strategy and services delivery planning, the role of sustainability, Total Quality Management (TQM), engineering management tools, managing people and becoming a professional engineer. On successful completion of this unit students will be able to construct a coherent engineering services delivery plan to meet the requirements of a sector-specific organisation or business. They will display personal commitment to professional standards and obligations to society, the engineering profession and the environment. This unit is assessed by a Pearson-set assignment. The project brief will be set by the centre, based on a theme provided by Pearson (this will change annually). The theme and chosen project within the theme will enable students to explore and examine a relevant and current topical aspect of professional engineering.

#### Manufacturing Systems Engineering (15 credits)

• Manufacturing systems engineering is concerned with the design and on-going operation and enhancement of the integrated elements within a manufacturing system, which is a very complex activity, even for simple products. The art of manufacturing systems engineering is essentially designing systems that can cope with that complexity effectively. The aim of this unit is to develop students' understanding of that complexity within a modern manufacturing environment. Among the topics covered in this unit are: elements that make up a manufacturing system, including production engineering, plant and maintenance engineering, product design, logistics, production planning and control, forecast quality assurance, accounting and purchasing, all of which work together within the manufacturing system to create products that meet customers' requirements. On successful completion of this unit students will be able to explain the principles of a manufacturing system, and they will learn how to optimise the operation of existing systems through discerning use of monitoring data. Some of the elements will be developed in greater depth; of particular importance will be looking at the systems of production planning and control, which are the day-to-day tools used to manage the manufacturing system effectively.

#### Lean Manufacturing (15 credits)

Lean manufacturing is a systematic approach to minimising waste in a manufacturing system, by focusing on the activities that add the most value through the eyes of the customer. The basis of lean manufacturing originated in the car industry and was developed by Toyota in Japan. Lean is now used extensively worldwide, in all types and size of organisation, to improve international competitiveness. It is therefore crucial for manufacturing engineers to be able to design and operate manufacturing systems that employ lean successfully The aim of this unit is to introduce students to the principles and processes of lean manufacturing, so that they can become an effective and committed practitioner of lean in whatever industry sector they are employed in. To do this, the unit will explore the tools and techniques that are applied by organisations practicing lean. The students will consider both the benefits and challenges of using lean manufacturing, and become sufficiently knowledgeable about the most important process tools and techniques to be able to operate and use them. Among the topics included in this unit are: scoping and defining lean manufacturing, the benefits and challenges of adopting Lean, The Toyota Production System (TPS), common tools and techniques associated with lean manufacturing and process improvement, and the most appropriate improvement tool(s) to tackle a problem. On successful completion of this unit students will be able to explain the common principles of lean manufacturing, compare the Toyota Production System with the now more widely adopted generic approaches to lean manufacturing, utilise a range of the process improvement tools used within lean manufacturing, and demonstrate effective communication skills in order to lead the process of continuous improvement across an organisation.

## Advanced Manufacturing Technology (15 credits)

The ability of successful companies to meet the growing demand of customers is heavily influenced by the development of advanced manufacturing technologies. Customers expect high complexity products, on demand, and with a growing element of customisation. In adopting advanced manufacturing technologies, successful companies will ensure faster time to market of new products, improve products and processes, use new, sustainable, materials, and customise to customer requirements. Manufacturing systems engineering underpins this development. In order to meet changing customer expectations and gain competitive advantage, focus needs to be applied to developing smart factories and advanced manufacturing technologies. Manufacturing organisations will seek integration between manufacturing technology, high performance computing, the internet, and the product at all stages of its life cycle. Industry 4.0 is the term that has been adopted to describe the 'fourth' industrial revolution currently underway, at present, in the manufacturing and commercial sectors of our society. It is a revolution based on the integration of cyber-physical systems with the Internet of Things and services. For the manufacturing sector, this integration has been enabled by successfully combining high performance computing, the internet and the development of advanced manufacturing technologies. Industry 4.0 is changing the way the world's most successful companies produce the products that their global customers demand. On successful completion of this unit students will be able to analyse and evaluate the potential of using advanced manufacturing technologies to improve the competitive advantage of the organisations adopting them. The student will develop knowledge and understanding of advanced manufacturing technologies, digitalisation and a range of advanced manufacturing technologies. They will also develop their own research activities into the latest developments.

## Further Maths (15 credits)

• The understanding of more advanced mathematics is important within an engineering curriculum to support and broaden abilities within the applied subjects at the core of all engineering programmes. Students are introduced to additional topics that will be relevant to them as they progress to the next level of their studies, advancing their knowledge of the underpinning mathematics gained in Unit 2: Engineering Maths. The unit will prepare students to analyse and model engineering situations using mathematical techniques. Among the topics included in this unit are: number theory, complex numbers, matrix theory, linear equations, numerical integration, numerical differentiation, and graphical representations of curves for estimation within an engineering context. Finally, students will expand their knowledge of calculus to discover how to model and solve engineering problems using first and second order differential equations. On successful completion of this unit students will be able to use applications of number theory in practical engineering situations, solve systems of linear equations relevant to engineering applications using matrix methods, approximate solutions of contextualised examples with graphical and numerical methods, and review models of engineering systems using ordinary differential equations.

## Further PLCs (15 credits)

• Programmable Logic Controllers (PLCs) were invented by the American Richard ('Dick') Morley in 1969, to be used in the manufacture of cars. Prior to that date production lines had been controlled by a mass of hard-wired relays. Using programmable devices in their place meant that changes in production could be implemented much faster without the need to rewire control circuits. The aim of this unit is to further develop students' skills in the use of PLCs and their specific applications within engineering and manufacturing. Among the topics included in this unit are: device interface methods, PLC signal processing and communications with other devices, PLC programming methodology and alternative programmable control devices. On successful completion of this unit students will be able to research the design, selection and use of PLCs as part of a larger system, programme a PLC to solve an industrial process problem for a given application and illustrate the alternative strategies for using other available types of programmable control devices.